Tutorial 7

March 17, 2016

1. (Example 5 on P106) Find the full Fourier series of ¢(x) = = on the interval [—[,].

Solution: The full Fourier series of ¢(z) = x is
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. (Example 6 on P107) Solve the following problem
Ut = CQsz
u(0,t) = u(l,t) =0
u(z,0) =z, u(x,0) =0
Solution: By separation of variables, we know that wu(z,¢) has an expansion
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Differentiating with respect to time yields
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Setting t = 0, we have
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so that all the B, = 0. Setting ¢ = 0 in the expansion of u(x,t), we have

nwT
T = g A, sin —



By the sine Fourier series of x on the interval [0,1], we know that A, = (—1)"+' 2
Thus
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. The complex form of the full Fourier series (on P112).

The full Fourier series of ¢(z) is
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where the coefficients are
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Note that Euler’s formula e = cos # + i sin @ which implies sin 6 = 6i05§_i9 and cosf = 6i9+26_w, then

we should therefore be able to write the full Fourier series in the complex form
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Multiplying both sides of (2) by e~*""#/! and integrating with respect to x yield
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where in the second equality we use the following simple fact:
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Hence

Remark: you can check that (1) and (2) are same series written in a different form by using Euler’s
formula.



